Shortcuts

dual_level

class torch.autograd.forward_ad.dual_level[source]

Context-manager that enables forward AD. All forward AD computation must be performed in a dual_level context.

Note

The dual_level context appropriately enters and exit the dual level to controls the current forward AD level, which is used by default by the other functions in this API.

We currently don’t plan to support nested dual_level contexts, however, so only a single forward AD level is supported. To compute higher-order forward grads, one can use functorch’s jvp.

Example:

>>> x = torch.tensor([1])
>>> x_t = torch.tensor([1])
>>> with dual_level():
...   inp = make_dual(x, x_t)
...   # Do computations with inp
...   out = your_fn(inp)
...   _, grad = unpack_dual(out)
>>> grad is None
False
>>> # After exiting the level, the grad is deleted
>>> _, grad_after = unpack_dual(out)
>>> grad is None
True

Please see the forward-mode AD tutorial for detailed steps on how to use this API.

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources