Shortcuts

torch.nn.functional.upsample

torch.nn.functional.upsample(input, size=None, scale_factor=None, mode='nearest', align_corners=None)[source]

Upsamples the input to either the given size or the given scale_factor

Warning

This function is deprecated in favor of torch.nn.functional.interpolate(). This is equivalent with nn.functional.interpolate(...).

Note

This operation may produce nondeterministic gradients when given tensors on a CUDA device. See Reproducibility for more information.

The algorithm used for upsampling is determined by mode.

Currently temporal, spatial and volumetric upsampling are supported, i.e. expected inputs are 3-D, 4-D or 5-D in shape.

The input dimensions are interpreted in the form: mini-batch x channels x [optional depth] x [optional height] x width.

The modes available for upsampling are: nearest, linear (3D-only), bilinear, bicubic (4D-only), trilinear (5D-only)

Parameters
  • input (Tensor) – the input tensor

  • size (int or Tuple[int] or Tuple[int, int] or Tuple[int, int, int]) – output spatial size.

  • scale_factor (float or Tuple[float]) – multiplier for spatial size. Has to match input size if it is a tuple.

  • mode (string) – algorithm used for upsampling: 'nearest' | 'linear' | 'bilinear' | 'bicubic' | 'trilinear'. Default: 'nearest'

  • align_corners (bool, optional) – Geometrically, we consider the pixels of the input and output as squares rather than points. If set to True, the input and output tensors are aligned by the center points of their corner pixels, preserving the values at the corner pixels. If set to False, the input and output tensors are aligned by the corner points of their corner pixels, and the interpolation uses edge value padding for out-of-boundary values, making this operation independent of input size when scale_factor is kept the same. This only has an effect when mode is 'linear', 'bilinear', 'bicubic' or 'trilinear'. Default: False

Note

With mode='bicubic', it’s possible to cause overshoot, in other words it can produce negative values or values greater than 255 for images. Explicitly call result.clamp(min=0, max=255) if you want to reduce the overshoot when displaying the image.

Warning

With align_corners = True, the linearly interpolating modes (linear, bilinear, and trilinear) don’t proportionally align the output and input pixels, and thus the output values can depend on the input size. This was the default behavior for these modes up to version 0.3.1. Since then, the default behavior is align_corners = False. See Upsample for concrete examples on how this affects the outputs.

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources